I wrote a (very long) blog post about those viral math problems and am looking for feedback, especially from people who are not convinced that the problem is ambiguous.
It’s about a 30min read so thank you in advance if you really take the time to read it, but I think it’s worth it if you joined such discussions in the past, but I’m probably biased because I wrote it :)
Having read your article, I contend it should be:
P(arentheses)
E(xponents)
M(ultiplication)D(ivision)
A(ddition)S(ubtraction)
and strong juxtaposition should be thrown out the window.Why? Well, to be clear, I would prefer one of them die so we can get past this argument that pops up every few years so weak or strong doesn’t matter much to me, and I think weak juxtaposition is more easily taught and more easily supported by PEMDAS. I’m not saying it receives direct support, but rather the lack of instruction has us fall back on what we know as an overarching rule (multiplication and division are equal). Strong juxtaposition has an additional ruling to PEMDAS that specifies this specific case, whereas weak juxtaposition doesn’t need an additional ruling (and I would argue anyone who says otherwise isn’t logically extrapolating from the PEMDAS ruleset). I don’t think the sides are as equal as people pose.
To note, yes, PEMDAS is a teaching tool and yes there are obviously other ways of thinking of math. But do those matter? The mathematical system we currently use will work for any usecase it does currently regardless of the juxtaposition we pick, brackets/parentheses (as well as better ordering of operations when writing them down) can pick up any slack. Weak juxtaposition provides better benefits because it has less rules (and is thusly simpler).
But again, I really don’t care. Just let one die. Kill it, if you have to.
I think anything after (whichever grade your country introduces fractions in) should exclusively use fractions or multiplication with fractions to express division in order to disambiguate. A division symbol should never be used after fractions are introduced.
This way, it doesn’t really matter which juxtaposition you prefer, because it will never be ambiguous.
Anything before (whichever grade introduces fractions) should simply overuse brackets.
This comment was written in a couple of seconds, so if I missed something obvious, feel free to obliterate me.
A division symbol should never be used after fractions are introduced.
But a fraction is a single term, 2 numbers separated by a division is 2 terms. Terms are separated by operators and joined by grouping symbols.
Division comes before Multiplication, doesn’t it? I know BODMAS.
This actually explains alot. Murica is Pemdas but Canadian used Bodmas so multiply is first in America.
As far as I understand it, they’re given equal weight in the order of operations, it’s just whichever you hit first left to right.
Yeah 100% was not taught that. Follow the pemdas or fail the test. Division is after Multiply in pemdas.
I put the equation into excel and get 9 which only makes sense in bodmas.
It doesn’t make sense in BODMAS either. Expanding Brackets has precedence of… Brackets, not “multiplication” - “Multiplication” refers literally to multiplication signs, of which there are none in this question.
The y(n+1) is same as yn + y if you removed the “6÷” part. It’s implied multiplication.
The y(n+1) is same as yn + y
No, it’s the same as (yn+y). You can’t remove brackets unless there is only 1 term left inside.
if you removed the “6÷” part. It’s
…The Distributive Law.
Ah, but if you use the rules BODMSA (or PEDMSA) then you can follow the letter order strictly, ignoring the equal precedence left-to-right rule, and you still get the correct answer. Therefore clearly we should start teaching BODMSA in primary schools. Or perhaps BFEDMSA. (Brackets, named Functions, Exponentiation, Division, Multiplication, Subtraction, Addition). I’m sure that would remove all confusion and stop all arguments. … Or perhaps we need another letter to clarify whether implicit multiplication with a coefficient and no symbol is different to explicit multiplication… BFEIDMSA or BFEDIMSA. Shall we vote on it?
Don’t need any extra letters - just need people to remember the rules around expanding brackets in the first place.
Obviously more letters would make the mnemonic worse, not better. I was making a joke.
As for the brackets ‘the rules around expanding brackets’ are only meaningful in the assumed context of our order of operations. For example, if we instead all agreed that addition should be before multiplication, then a×(b+c) would “expand” to a×b+c, because the addition is before multiplication anyway and the brackets do nothing.
I was making a joke.
Fair enough, but my point still stands.
if we instead all agreed that addition should be before multiplication
…then you would STILL have to do multiplication first. You can’t change Maths by simply agreeing to change it - that’s like saying if we all agree that the Earth is flat then the Earth is flat. Similarly we can’t agree that 1+1=3 now. Maths is used to model the real world - you can’t “agree” to change physics. You can’t add 1 thing to 1 other thing and have 3 things now, no matter how much you might want to “agree” that there is 3, there’s only 2 things. Multiplying is a binary operation, and addition is unary, and you have to do binary operators before unary operators - that is a fact that no amount of “agreeing” can change. 2x3 is actually a contracted form of 2+2+2, which is why it has to be done before addition - you’re in fact exposing the hidden additions before you do the additions.
the brackets do nothing
The brackets, by definition, say what to do first. Regardless of any other order of operations rules, you always do brackets first - that is in fact their sole job. They indicate any exceptions to the rules that would apply otherwise. They perform no other function. If you’re going to no longer do brackets first then you would simply not use them at all anymore. And in fact we don’t - when there are redundant brackets, like in (2)(1+2), we simply leave them out, leaving 2(1+2).
That makes no sense. Division is just multiplication by an inverse. There’s no reason for one to come before another.
I think weak juxtaposition is more easily taught
Except it breaks the rules which already are taught.
the PEMDAS ruleset
But they’re not rules - it’s a mnemonic to help you remember the actual order of operations rules.
Just let one die. Kill it, if you have to
Juxtaposition - in either case - isn’t a rule to begin with (the 2 appropriate rules here are The Distributive Law and Terms), yet it refuses to die because of incorrect posts like this one (which fails to quote any Maths textbooks at all, which is because it’s not in any textbooks, which is because it’s wrong).
Except it breaks the rules which already are taught.
It isn’t, because the ‘currently taught rules’ are on a case-by-case basis and each teacher defines this area themselves. Strong juxtaposition isn’t already taught, and neither is weak juxtaposition. That’s the whole point of the argument.
But they’re not rules - it’s a mnemonic to help you remember the actual order of operations rules.
See this part of my comment: “To note, yes, PEMDAS is a teaching tool and yes there are obviously other ways of thinking of math. But do those matter? The mathematical system we currently use will work for any usecase it does currently regardless of the juxtaposition we pick, brackets/parentheses (as well as better ordering of operations when writing them down) can pick up any slack. Weak juxtaposition provides better benefits because it has less rules (and is thusly simpler).”
Juxtaposition - in either case - isn’t a rule to begin with (the 2 appropriate rules here are The Distributive Law and Terms), yet it refuses to die because of incorrect posts like this one (which fails to quote any Maths textbooks at all, which is because it’s not in any textbooks, which is because it’s wrong).
You’re claiming the post is wrong and saying it doesn’t have any textbook citation (which is erroneous in and of itself because textbooks are not the only valid source) but you yourself don’t put down a citation for your own claim so… citation needed.
In addition, this issue isn’t a mathematical one, but a grammatical one. It’s about how we write math, not how math is (and thus the rules you’re referring to such as the Distributive Law don’t apply, as they are mathematical rules and remain constant regardless of how we write math).
It isn’t, because the ‘currently taught rules’ are on a case-by-case basis and each teacher defines this area themselves
Nope. Teachers can decide how they teach. They cannot decide what they teach. The have to teach whatever is in the curriculum for their region.
Strong juxtaposition isn’t already taught, and neither is weak juxtaposition
That’s because neither of those is a rule of Maths. The Distributive Law and Terms are, and they are already taught (they are both forms of what you call “strong juxtaposition”, but note that they are 2 different rules, so you can’t cover them both with a single rule like “strong juxtaposition”. That’s where the people who say “implicit multiplication” are going astray - trying to cover 2 rules with one).
See this part of my comment… Weak juxtaposition provides better benefits because it has less rules (and is thusly simpler)
Yep, saw it, and weak juxtaposition would break the existing rules of Maths, such as The Distributive Law and Terms. (Re)learn the existing rules, that is the point of the argument.
citation needed
Well that part’s easy - I guess you missed the other links I posted. Order of operations thread index Text book references, proofs, the works.
this issue isn’t a mathematical one, but a grammatical one
Maths isn’t a language. It’s a group of notation and rules. It has syntax, not grammar. The equation in question has used all the correct notation, and so when solving it you have to follow all the relevant rules.
Nope. Teachers can decide how they teach. They cannot decide what they teach. The have to teach whatever is in the curriculum for their region.
Yes, teachers have certain things they need to teach. That doesn’t prohibit them from teaching additional material.
That’s because neither of those is a rule of Maths. The Distributive Law and Terms are, and they are already taught (they are both forms of what you call “strong juxtaposition”, but note that they are 2 different rules, so you can’t cover them both with a single rule like “strong juxtaposition”. That’s where the people who say “implicit multiplication” are going astray - trying to cover 2 rules with one).
Yep, saw it, and weak juxtaposition would break the existing rules of Maths, such as The Distributive Law and Terms. (Re)learn the existing rules, that is the point of the argument.
Well that part’s easy - I guess you missed the other links I posted. Order of operations thread index Text book references, proofs, the works.
You argue about sources and then cite yourself as a source with a single reference that isn’t you buried in the thread on the Distributive Law? That single reference doesn’t even really touch the topic. Your only evidence in the entire thread relevant to the discussion is self-sourced. Citation still needed.
Maths isn’t a language. It’s a group of notation and rules. It has syntax, not grammar. The equation in question has used all the correct notation, and so when solving it you have to follow all the relevant rules.
You can argue semantics all you like. I would put forth that since you want sources so much, according to Merriam-Webster, grammar’s definitions include “the principles or rules of an art, science, or technique”, of which I think the syntax of mathematics qualifies, as it is a set of rules and mathematics is a science.
That doesn’t prohibit them from teaching additional material
Correct, but it can’t be something which would contradict what they do have to teach, which is what “weak juxtaposition” would do.
a single reference
I see you didn’t read the whole thread then. Keep going if you want more. Literally every Year 7-8 Maths textbook says the same thing. I’ve quoted multiple textbooks (and haven’t even covered all the ones I own).
mathematics is a science
Actually you’ll find that assertion is hotly debated.
Correct, but it can’t be something which would contradict what they do have to teach, which is what “weak juxtaposition” would do.
Citation needed.
I see you didn’t read the whole thread then. Keep going if you want more. Literally every Year 7-8 Maths textbook says the same thing. I’ve quoted multiple textbooks (and haven’t even covered all the ones I own).
If I have to search your ‘source’ for the actual source you’re trying to reference, it’s a very poor source. This is the thread I searched. Your comments only reference ‘math textbooks’, not anything specific, outside of this link which you reference twice in separate comments but again, it’s not evidence for your side, or against it, or even relevant. It gets real close to almost talking about what we want, but it never gets there.
But fine, you reference ‘multiple textbooks’ so after a bit of searching I find the only other reference you’ve made. In the very same comment you yourself state “he says that Stokes PROPOSED that /b+c be interpreted as /(b+c). He says nothing further about it, however it’s certainly not the way we interpret it now”, which is kind of what we want. We’re talking about x/y(b+c) and whether that should be x/(yb+yc) or x/y * 1/(b+c). However, there’s just one little issue. Your last part of that statement is entirely self-supported, meaning you have an uncited refutation of the side you’re arguing against, which funnily enough you did cite.
Now, maybe that latter textbook citation I found has some supporting evidence for yourself somewhere, but an additional point is that when providing evidence and a source to support your argument you should probably make it easy to find the evidence you speak of. I’m certainly not going to spend a great amount of effort trying to disprove myself over an anonymous internet argument, and I believe I’ve already done my due diligence.
Citation needed.
So you think it’s ok to teach contradictory stuff to them in Maths? 🤣 Ok sure, fine, go ahead and find me a Maths textbook which has “weak juxtaposition” in it. I’ll wait.
Your comments only reference ‘math textbooks’, not anything specific
So you’re telling me you can’t see the Maths textbook screenshots/photo’s?
outside of this link which you reference twice in separate comments but again, it’s not evidence for your side, or against it, or even relevant
Lennes was complaining that literally no textbooks he mentioned were following “weak juxtaposition”, and you think that’s not relevant to establishing that no textbooks used “weak juxtaposition” 100 years ago?
We’re talking about x/y(b+c) and whether that should be x/(yb+yc) or x/y * 1/(b+c).
It’s in literally the first textbook screenshot, which if I’m understanding you right you can’t see? (see screenshot of the screenshot above)
you have an uncited refutation of the side you’re arguing against, which funnily enough you did cite.
Ah, no. Lennes was complaining about textbooks who were obeying Terms/The Distributive Law. His own letter shows us that they all (the ones he mentioned) were doing the same thing then that we do now. Plus my first (and later) screenshot(s).
Also it’s in Cajori, but I didn’t find it until later. I don’t remember what page it was, but it’s in Cajori and you have the reference for it there already.
you should probably make it easy to find the evidence you speak of
Well I’m not sure how you didn’t see all the screenshots. They’re hard to miss on my computer!
P.S. if you DID want to indicate “weak juxtaposition”, then you just put a multiplication symbol, and then yes it would be done as “M” in BEDMAS, because it’s no longer the coefficient of a bracketed term (to be solved as part of “B”), but a separate term.
6/2(1+2)=6/(2+4)=6/6=1
6/2x(1+2)=6/2x3=3x3=9
The real question here is BODMAS or PEMDAS?
Also PIMDAS (we had this conversation in my class this semester as we had a very wide range of ages and regions present in the class) (I is for indices) (I don’t remember what the Colombian students said, for some reason we had a group of 3 Colombians in our class of 12 nowhere near Colombia)
That said, the question is ambiguously written. Maybe the popularity of this will result in calculators being more consistent with how they interpret implicit multiplication signs.
(my preference is to show two lines, one with the numerator and one with the divisor)
The order of operations is not part of a holy text that must be blindly followed. If these numbers had units and we knew what quantity we were trying to solve for, there would be no argument whatsoever about what to do. This is a question that never comes up in physics because you can use dimensional analysis to check to see if you did the algebra correctly. Context matters.
The order of operations is not part of a holy text that must be blindly followed
No, it’s in Maths textbooks, and must be… blindly followed. :-)
If these numbers had units
…it wouldn’t matter at all. The order of operations comes from the very definitions of the operators themselves. e.g. 2x3 is shorthand for 2+2+2.
Ackshually, the answer is 4
6÷2*(1+2)
6÷(1+2)*2
6÷(3)*2
2*2
4
You’re welcome
psychopath
If there are rules about which dot comes first then you are not allowed to do this.
The rule is you’re not allowed to add dots (multiplication) - broke up the factorised term, which is why a different answer.
You aren’t allowed to do this because division isn’t transitive.
In fact you’re not allowed to add the multiplication - it breaks up the factorised term, hence gives a different answer.
Great read! Easy for everyone to understand, but also thorough. I loved the breakdown into the calculators functionality
Not thorough at all. Never once referenced an actual Maths textbook. Read this instead.
Damn ragebait posts, it’s always the same recycled operation. They could at least spice it up, like the discussion about absolute value. What’s |a|b|c|?
What I gather from this, is that Geogebra is superior for not allowing ambiguous notation to be parsed 👌
What’s |a|b|c|?
The absolute value of a, times b, times the absolute value of c (which would be more naturally written as b|ac|). Unlike brackets, there’s no such thing as nested absolute value. If you wanted it to read as the absolute value of (a times the absolute value of b times c), then that’s EXACTLY the same answer as the absolute value of (a times b times c), which is why nested absolute values make no sense - you only have to take absolute value once to get rid of all the contained signs.
Your example with the absolute values is actually linked in the “Even more ambiguous math notations” section.
Geogebra has indeed found a good solution but it only works if you input field supports fractions and a lot of calculators (even CAS like WolframAlpha) don’t support that.
Even more ambiguous math notations
Except that isn’t ambiguous either. See my reply to the original comment.
Geogebra has indeed found a good solution
Geogebra has done the same thing as Desmos, which is wrong. Desmos USED TO give correct answers, but then they changed it to automatically interpret / as a fraction, which is good, except when they did that it ALSO now interprets ÷ as a fraction, which is wrong. ½ is 1 term, 1÷2 is 2 terms (but Desmos now treats it as 1 term, which goes against the definition of terms)
I agree with your core message, that the issue is caused by bad notation. However I don’t really see why you consider implicit multiplication to be the sole reason. In my mind, a/bc is equally as ambiguous as a/b*c. The symbols are not important.
You don’t even consider this in your article, instead you seem to take the position that the operations are resolved from left to right. This idea probably comes from programming languages, as they commonly use this convention, but I haven’t seen this defined in mathematics anywhere. I’m open to being wrong here, so if you can show me such a definition from an authoritative source (maybe ISO) I’d be thankful.
As it stands, you basically claim “the original notation is ambiguous, but with explicit × the answer is obviously nine, because my two calculators agree”, even though you just discounted calculator proofs. By the way, both calculators explicitly define this left-to-right order in their documentation.
The ISO section 7.1.3 you quoted is very reasonable and succinct, and contradicts your claim that explicit multiplication sign removes ambiguity. There would be no need for this section if a left-to-right rule existed.
a/bc is equally as ambiguous as a/b*c
It’s not ambiguous at all. By the definition of Terms - ab=(axb) - a/bc is 2 terms and a/bxc is 3 terms. If we were to write it in fraction form (to illustrate the difference), in the former c is in the denominator, but in the latter it’s in the numerator, hence a different answer. dotnet.social/@SmartmanApps/110846452267056791
you seem to take the position that the operations are resolved from left to right… but I haven’t seen this defined in mathematics anywhere
It applies to operators, or more precisely division. When doing the divisions, you have to do them left-to-right, but other than that each of the operators can be done in any order. i.e. it doesn’t matter what order you do the multiplications in, as long as you do them before the additions and subtractions. Unfortunately I’ve seen many people misremember left-to-right as an overarching rule, rather than only applying to division.
The ambiguous ones at least have some discussion around it. The ones I’ve seen thenxouple times I had the misfortune of seeing them on Facebook were just straight up basic order of operations questions. They weren’t ambiguous, they were about a 4th grade math level, and all thenpeople from my high-school that complain that school never taught them anything were completely failing to get it.
I’m talking like 4+1x2 and a bunch of people were saying it was 10.
What the heck are you all fighting about? It’s BODMAS.
They’re arguing about whether Distribution is Multiplication or not. Spoiler alert: it isn’t, it’s Brackets.
deleted by creator
So what does BODMAS sound like to the other side?
samdob
I’d would be great if you find the time to read the post and let me know afterwards what you think. It actually looks trivial as a problem but the situation really isn’t, that’s why the article is so long.
I was being facetious. I will try to find the time to read the post, but I know already that the problem isn’t trivial. It involves, above all else, human comprehension, which is a very iffy thing, to say the least.
It actually looks trivial as a problem
Because it actually is.
that’s why the article is so long
The article was really long because there were so many stawmen in it. Had you checked a Maths textbook or asked a Maths teacher it could’ve been really short, but you never did either.
My years out of school has made me forget about how division notation is actually supposed to work and how genuinely useless the ÷ and / symbols are outside the most basic two-number problems. And it’s entirely me being dumb because I’ve already written problems as 6÷(2(1+2)) to account for it before. Me brain dun work right ;~;
There’s no forms consensus on which one is correct. To avoid misunderstanding mathematicians use a horizontal bar.
Only if it’s a fraction. If it’s 2 separate terms then you use whatever your country uses for division - obelus or colon or whatever. They have to be 2 separate things, otherwise how would you write to divide by a fraction?
I’ve seen a calculator interpret 1 ÷ 2π as ½π which was kinda funny
An e-calculator I’m guessing? (either that or Texas Instruments) Desmos USED TO interpret that correctly, but then they made a change with automatically turning division into fractions and broke it (because if you’ve specified division then it’s not a fraction) dotnet.social/@SmartmanApps/111164851485070719
I believe it was a app , yes
All calculators that are listed in the article as following weak juxtaposition would interpreted it that way.
And they’re all wrong dotnet.social/@SmartmanApps/111164851485070719
I found a few typos. In the 2nd paragraph under the section “strong feelings”, you use “than” when it should be “then”. More importantly, when talking about distributive properties, you say x(x+z)=xy+xz. I believe you meant x(y+z)=xy+xz.
Otherwise, I enjoyed that read. I’m embarrassed to say that I did think pemdas meant multiplication came before division, however I’m proud to say that I’ve unconsciously known that it’s important to avoid the ambiguity by putting parentheses everywhere for example when I make formulas in spreadsheets. Which by the way, spreadsheets generally allow multiplication by juxtaposition.
I believe you meant x(y+z)=xy+xz.
Actually it should be x(y+z)=(xy+xz), as that’s exactly where a lot of people go wrong. They go from 6/2(1+2) to 6/2x3, instead of to 6/(2x3), and thus end up with the wrong answer (cos that flipped the 3 from being in the denominator to being in the numerator. i.e. instead of dividing by 3 they are now multiplying by 3, all because they removed brackets prematurely).
Thank you so much for taking the time and reading the post. I just fixed the typos, many thanks for pointing them out.
There is nothing really to be embarrassed about and if you look at the comment sections of such viral math posts you can see that you are certainly not the only one. I think that mnemonics that use “MD” and “AS” without grouping like in “PE(MD)(AS)” are really to blame here.
An alternative would be to drop the inverse and only use say multiplication and addition as I suggested with “PEMA” but with “PEMDAS” one basically sets up students for the problem that they think that multiplication comes before division.
What if the real answer is the friends we made along the way?
That’d be good, but what I’ve found so far here is a whole bunch of people who don’t like being told the actual facts of the matter! 😂
Hey this is interesting, thanks for sharing!
I guess if you wrote it out with a different annotation it would be
6
-‐--------‐--------------
2(1+2)
=
6
-‐--------‐--------------
2×3
=
6
–‐--------‐--------------
6
=1
I hate the stupid things though
deleted by creator
Escape symbols?
deleted by creator
6⁄2(1+2) ⇒ 6⁄2*3 ⇒ 6⁄6 ⇒ 1
You’re more patient than me to go to that trouble! 😂 But yeah, looks good. Just one technicality (and relates to how many people arrive at the wrong answer), the 2x3 should be in brackets. Yes if you had a proper fraction bar it wouldn’t matter, but that’s what’s missing with inline writing, and is compensated for with brackets (and brackets can’t be removed unless there’s only 1 term inside). In your original comment, it does indeed look like 6/(2x3), but, to illustrate the issue with what you wrote, as soon as I quoted it, it now looks like (6/2)x3 in my comment.